节能型电缆桥架设计原理及应用
[关键词] 节能;电缆桥架;通风散热
节能、降耗、环保是当代社会发展的必然趋势,提高电能利用率、降低碳排放是世界电力行业、主要用能单位面临的共同课题,而降低电路线损是提高用能的重要途径。以电厂为例,日本电厂发电后电能利用率最高为57%,美国为51%,我国约为40%。2013 年上半年,我国发电量为24342 亿kW,若提高1% 的电能利用率,则相当于每年节约电能近487 亿kW·h,相当于节约165 万t 标准煤。
1.1 线损的计算方法
线损计算是降损节能,加强线损管理的一项重要的技术管理手段。总所周知,输电线路损耗是当负荷电流通过线路时,在线路电阻上产生的功率损耗。其计算公式为ΔP=I 2R,式中:ΔP 为损失功率;I 为负荷电流;R 为导线电阻。导线电阻R 不是恒定的,在电源频率一定的情况下,其阻值随导线温度的变化而变化。铜铝导线电阻温度系数a 为0.004。在有关技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;且负载电流通过导线电阻时发热,又使导线温度升高,所以导线中的实际电阻值随环境、温度和负荷电流的变化而变化。为了简化计算,通常把导线电阻分为三个分量考虑:(1)基本电阻20℃时的导线电阻值R20;(2)温度附加电阻Rt;(3)负载电流附加电阻Rl。线路实际电阻为:R=R20+Rt+Rl。由线损计算公式分析,降低输电线路工作时导线温度的升高,是减少线损的有效途径。下面以60 kW 机组为例,内部电压U=1.5-2.0万V,输送电流I=60 A,电厂内部选用35 mm2 铜芯高压电缆,总长度约为45 km,以户外温度为20 ℃为参照,电缆自身温度值升高4℃,计算因电缆温度升高造成线损的增加量:ΔW=I 2ΔRt=1.92 kW。电缆因温度上升线路损耗比例系数为:1.92/60=0.032=3.2%。
通过以上计算发现,电缆温度升高对线路损耗影响相当大。降低电缆工作温度,减少电缆阻值上升,是降低线路损耗、提高电能利用率的有效途径。这对承载、保护、管理电缆的载体电缆桥架提出了明确的要求和研究方向。1.2 节能电缆桥架的设计原理
针对电缆桥架线损特点,通过改变自身结构,可使桥架内外自然循环通风,有效降低线路损耗。
(1)通过改变冲压工艺,桥架底面布满纵、横加强筋,每个加强筋底部冲有倒锥形椭圆散热孔,减少电缆与桥架的接触面积,增大了桥架表面散热面积。桥架底面通风孔面积占底面的10.17%,与电缆接触面积减少38%,最大程度提高了桥架自身的散热功能。
(2)桥架侧面科学设计有2~3 排散热通风孔,电缆桥架内部的热气通过侧面通气孔快速排出;当风通过底部扩散状通风孔吹入桥架内时,将直吹风向四周发散,与桥架两侧面通风孔形成循环通风系统,使桥架内外空气循环畅通,热量快速散发,有效降低电缆温度,进而减少电缆阻值上升,达到减少线路损耗的目的(图1,2)。从图1 可以看出新型节能电缆桥架通风散热的原理,同时通过与图2 的设计原理比较可以尹晓普:节能型电缆桥架设计原理及应用看到,目前国内外其他桥架的通风散热系统还不够完善,外部空气仅能直吹电缆的露出部分,不能使电缆所产生的热量充分散发,功能性不强。
2 节能电缆桥架的效果与特点
2.1 节能电缆桥架的效果
节能型电缆桥架,是目前国内外市场上循环通风散热系统最完善的电缆桥架产品,根据有关部门检测结果可知,节能型电缆桥架较普通电缆桥架有效降低电缆工作线损3.11%,即比普通电缆桥架节能3.11%,远高于节能效率超过0.8% 的国家标准。2.2 节能电缆桥架的特点
(1)桥架内外空气循环使热量散发迅速,有效降低电缆温度,减少电缆阻值上升,减少线路损耗。
(2)桥架通过设计增加加强筋,提高了桥架的承载力,比同料厚产品增加承载力1.5 倍,在电缆节能的同时,节省了材料。
(3)可延缓电缆绝缘层老化,延长电缆使用寿命,减少用电事故的发生。
3 结束语
为推动现代装备事业战略和生态文明建设战略发展的当代中国,需要高质量、高性能、低能耗、低污染的先进制造业和技术领先、节能降耗的优质产品来支撑,这也是提升现代装备事业发展的必要条件。
节能电缆桥架通过研发设计、改变加工工艺,突出其结构节能的特点,在保障产品具备支撑、管理、规范电缆等基本功能的同时,使其附加了减少线损、减轻产品重量而不降低承载力等优质功能,将为我国实施现代装备事业战略、生态文明建设战略做出一定贡献。
- 上一篇:槽式镀锌钢制电缆桥架 金属弱电桥架 2016/6/25
- 下一篇:电缆桥架结构模型 2016/6/16